Toward Volatile Metal Complexes of Rutherfordium.

II. Thermochromatography of Hf Hexafluoroacetylacetonate Complexes

Ch.E. Düllmann^{1,2}, G.K. Pang^{1,2}, C.M. Folden III^{1,2}, K.E. Gregorich¹, D.C. Hoffman^{1,2}, H. Nitsche^{1,2}, R. Sudowe^{1,2}, P.M. Zielinski^{1,2}

The synthesis of volatile hexafluoroacetylacetonate (hfa) complexes of zirconium (Zr) and hafnium (Hf) is described in another contribution to this annual report [1]. For a schematic of the setup used for the studies described here, we refer to Fig. 1 in [1]. In this report, we will present two aspects of these studies in more detail.

THERMOCHROMATOGRAPHY OF Hf-hfa COMPLEXES

The adsorption behavior of the formed compounds was investigated in on-line thermochromatography (TC) [2] experiments by introducing them into an open quartz column (i.d. 4 mm) with a negative longitudinal temperature gradient from +75 to -50°C. It is not possible to use a lower minimum temperature because macro amounts of hfa present in the carrier gas deposit at about -65°C. The distribution of 169 Hf was measured on-line with a HPGe γ -detector using a lead collimator with a window of 2-cm width.

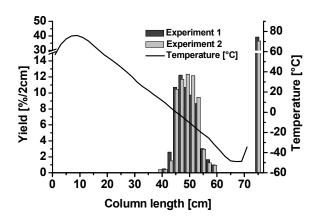


FIGURE 1: Thermochromatogram of 169 Hf ($T_{1/2}$ =3.24 min). Two experiments conducted under identical conditions are shown. The temperature gradient is indicated (right-hand scale). An activated charcoal trap (ACC) was mounted after the exit of the TC column to retain 169 Hf that passed through the column.

The measured thermochromatogram is displayed in Figure 1. Each 2-cm section of the column was externally counted for 2 min while the beam was on. A considerable fraction of the transported ¹⁶⁹Hf passed through the chromatography column and reached an activated charcoal (ACC) trap that was installed after the exit of the column. Such traps absorb 100% of the formed species. The remainder of the ¹⁶⁹Hf deposited at temperatures between 0 and 20°C. This is in

contradiction to the deposition temperature of 40°C reported in [3].

More detailed studies of the thermochemistry of this system are under way.

SEPARATION OF Zr FROM Y

In the irradiation of a ^{nat}Ge target with 85 MeV ¹⁸O, several isotopes of Y are formed directly in pxn reactions. γ spectra of a catcher foil mounted inside the Recoil Transfer Chamber (RTC) [1,4] to catch all nuclear reaction products entering the RTC indicate the presence of several Y isotopes. γ spectra of the ACC trap installed after the exit of the TC column (the minimum temperature was -4 °C in this experiment) did not reveal the presence of any Y isotopes, indicating a separation of Zr from Y.

ACKNOWLEDGEMENTS

The help of Diana Phillips, Lindsy Farina, Sarah Gallaher, and Hassan Mahmud in these studies is acknowledged. We thank the staff of the 88-inch cyclotron for the production of the cocktail beams.

REFERENCES

- [1] Ch.E. Düllmann et al., this annual report.
- [2] I. Zvara, Isotopenpraxis 26, 251 (1990).
- [3] E.V. Fedoseev *et al.*, J. Nucl. Radioanal. Chem., Lett. 119, 347 (1987).
- [4] U.W. Kirbach et al., Nucl. Instrum. Meth. A484, 587 (2002).

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Department of Chemistry, University of California, Berkeley, California 94720-1460
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720